The Critical Minerals ‘Arms’ Race

The world is in the midst of an unprecedented energy transition which will be driven by a massive deployment of a wide range of renewable energy technologies. Many of these rely on critical minerals including lithium, cobalt, and graphite. In addition, geopolitical risks and risks of supply chain disruption are driving governments across the world to invest in securing critical minerals’ supply sources, further fuelling demand. The twin forces of decarbonisation and energy security are poised to drive the demand for critical minerals for many years to come.

What are critical minerals?

According to Geoscience Australia, a critical mineral is a metallic or non-metallic element that is essential for modern technologies, economies, or national security, and has a supply chain risk of disruption due to geopolitical issues, trade policy or other factors1.

Critical minerals are integral to the realisation of Net Zero goals and are used across a range of clean-energy infrastructure such as solar panels, wind turbines, and electric vehicles (EVs). Clean energy technologies are more material-intensive – they require more minerals to build vs their fossil fuel equivalents2 . Below is an example that highlights material use across clean energy technologies.

Mineral use in clean energy technology versus a conventional car and coal power

Source: International Energy Agency, May 2021. Sprott, August 2022. The intensities for an electric car are based on a 75 kWh NMC (nickel manganese cobalt) 622 cathode and graphite-based anode. Offshore wind is based on the direct-drive permanent magnet synchronous generator system. Coal is based on an ultra-supercritical plant. Silver usage in solar PV generation is based on 20 grams used per solar panel. Actual consumption can vary by project depending on technology choice, project size and installation environment.

Demand is projected to be ‘off the charts…’

Critical minerals such as lithium, cobalt, graphite, and rare earth elements are crucial components in rapidly growing clean energy technologies, and demand for these minerals is likely to accelerate from here on as the energy transition gathers pace. So too the demand for conductive base metals like copper and nickel. The International Energy Agency (IEA) forecasts that, based on current government policies (Stated Policies Scenario), demand for lithium could increase by ~13 times by 2040. Based on Paris Agreement-aligned adoption of clean energy technologies (Sustainable Development Scenario), demand for lithium could increase by ~42 times by 2040.

Growth of selected minerals demand in 2040 relative to 2020

Source: International Energy Agency, May 2021. Demand from non-energy sector use of Energy Transition Materials (ETMs) was assessed using historical consumption, relevant activity drivers and the derived material intensity. *Neodymium demand is used as indicative for rare earth elements. Stated Policies Scenario is an indication of where the energy system is heading based on a sector-by-sector analysis of today’s government policies and policy announcements; Sustainable Development Scenario indicates what would be required in a trajectory consistent with meeting the Paris Agreement goals. Actual outcomes may differ materially from projections.

…Though supply is the bigger challenge

A major challenge facing this sector is the geographic concentration of supply chains, with China being the dominant player. Globally, China refines 68% of nickel, 40% of copper, 59% of lithium, and 73% of cobalt3, 4. But while China dominates the downstream market, it is not as important in the upstream market, with Australia and Chile mining more than 70% of global lithium, and the Democratic Republic of Congo (DRC) accounting for nearly 70% of cobalt mining.

The geographic concentration of processing operations in China is a key vulnerability for the energy transition5. Both the European Union and the United States have recognised dependence on China for critical inputs and technologies as a major reason to increase their critical mineral supply chain resilience6.

But there is a question mark over whether the West can achieve its goal of securing critical minerals’ supply chains, as China has dominated this market for more than three decades and new investments have a long lead time7.

Australia is poised to be a global leader in critical minerals

Australia is a world-leading critical minerals exporter and is one of the top producers of lithium. Globally, countries are looking to diversify their clean energy supply chains, and Australia with its vast critical minerals reserves can play a crucial role in potentially de-risking the global critical minerals supply chain. According to the International Monetary Fund, Australia is in the driver’s seat and is set to benefit from a massive surge in demand for critical minerals worth U$12.9 trillion over the next two decades8. However, to fully exploit this opportunity Australia needs to push further into downstream refining and component manufacture, leveraging its potential access to unlimited amounts of low-cost renewable energy.9

Mining of critical minerals – is it green enough?

Mining or extraction of any mineral can be carbon-intensive, result in soil degradation and water shortages, and damage local ecosystems. Mining of critical minerals is not an exception. For instance, lithium extraction harms local ecosystems, results in air contamination, and can cause water shortages10. Production of critical minerals is energy intensive and can lead to significant carbon emissions, but this does not negate the decarbonisation advantages of clean energy technologies: the end use case of critical minerals when considered over the full cycle of emissions compared to other technologies. Total lifecycle greenhouse gas emissions of EVs are around half those of internal combustion engine cars on average, with the potential for a further 25% reduction with low-carbon electricity11.

Multi-year investment thematic that is just getting started…

The energy transition is here to stay, and critical minerals are going to play a crucial role in enabling the technologies underpinning the transition. A significant increase in demand is likely for critical minerals over the coming decades as this transition accelerates. Additionally, government strategies focused on energy security will see a ramp-up of investments in the sector.

XMET Energy Transition Metals ETF focuses on pure-play critical mineral mining companies and producers of a range of critical minerals and conductive base metals, as well as other companies involved in the mining, exploration, and recycling of these minerals.

There are risks associated with an investment in XMET, including market risk, international investment risk, commodity price and ETM company related risks, and concentration risk. Investment value can go up and down. An investment in the Fund should only be considered as a part of a broader portfolio, taking into account your particular circumstances, including your tolerance for risk. For more information on risks and other features of the Fund, please see the Product Disclosure Statement and Target Market Determination, both available at


This article mentions the following funds

Photo of Vinnay Cchoda

Written by

Vinnay Cchoda


Leave a reply

Your email address will not be published. Required fields are marked *

Previous article
Next article